今日头条 焦点资讯 营销之道 企业报道 淘宝运营 网站建设 软件开发 400电话
  当前位置: 首页 » 资讯 » 网站建设 » 正文

用PaddlePaddle进行车牌识别(二)

放大字体  缩小字体 发布日期:2018-04-13  来源:企业800网  作者:新格网  浏览次数:309  【去百度看看】
核心提示:上节我们讲了第一部分,如何用生成简易的车牌,这节课中我们会用PaddlePaddle来识别生成的车牌。 数据读取 在上一节生成车牌时,我们可以分别生成训练数据和测试数据,方法如下(完整代码在这里):1 # 将生成的车牌图片写入文件夹,对应的label写入label.txt2 def genBatch(self, batchSize,pos,charRange, outputPath,size):3 if (not os.path.exists(outputPath)):4 os.mkdir(outputP

上节我们讲了第一部分,如何用生成简易的车牌,这节课中我们会用PaddlePaddle来识别生成的车牌。

 数据读取

  在上一节生成车牌时,我们可以分别生成训练数据和测试数据,方法如下(完整代码在这里):

1 # 将生成的车牌图片写入文件夹,对应的label写入label.txt

2 def genBatch(self, batchSize,pos,charRange, outputPath,size):

3     if (not os.path.exists(outputPath)):

4         os.mkdir(outputPath)

5     outfile = open('label.txt','w')

6     for i in xrange(batchSize):

7             plateStr,plate = G.genPlateString(-1,-1)

8             print plateStr,plate

9             img =  G.generate(plateStr);

10             img = cv2.resize(img,size);

11             cv2.imwrite(outputPath + "/" + str(i).zfill(2) + ".jpg", img);

12             outfile.write(str(plate)+"\n")        

  生成好数据后,我们写一个reader来读取数据 ( reador.py )

1 def reader_creator(data,label):

2     def reader():

3         for i in xrange(len(data)):

4             yield data[i,:],int(label[i])

5     return reader

  灌入模型时,我们需要调用paddle.batch函数,将数据shuffle后批量灌入模型中:

1 # 读取训练数据

2 train_reader = paddle.batch(paddle.reader.shuffle(

3                 reador.reader_creator(X_train,Y_train),buf_size=200),

4                 batch_size=16)

5

6 # 读取验证数据

7  val_reader = paddle.batch(paddle.reader.shuffle(

8                 reador.reader_creator(X_val,Y_val),buf_size=200),

9                 batch_size=16)

10        trainer.train(reader=train_reader,num_passes=20,event_handler=event_handler)

 构建网络模型

  因为我们训练的是端到端的车牌识别,所以一开始构建了两个卷积-池化层训练,训练完后同步训练 7 个全连接层,分别对应车牌的 7 位字符,最后将其拼接起来,与原始的label计算Softmax值,预测训练结果。 

1 def get_network_cnn(self):

2    # 加载data和label     

3     x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(self.data))

4     y = paddle.layer.data(name='y', type=paddle.data_type.integer_value(self.label))

5     # 构建卷积-池化层-1

6     conv_pool_1 = paddle.networks.simple_img_conv_pool(

7             input=x,

8             filter_size=12,

9             num_filters=50,

10             num_channel=1,

11             pool_size=2,

12             pool_stride=2,

13             act=paddle.activation.Relu())

14     drop_1 = paddle.layer.dropout(input=conv_pool_1, dropout_rate=0.5)

15     # 构建卷积-池化层-2

16     conv_pool_2 = paddle.networks.simple_img_conv_pool(

17             input=drop_1,

18             filter_size=5,

19             num_filters=50,

20             num_channel=20,

21             pool_size=2,

22             pool_stride=2,

23             act=paddle.activation.Relu())

24     drop_2 = paddle.layer.dropout(input=conv_pool_2, dropout_rate=0.5)

25

26     # 全连接层

27     fc = paddle.layer.fc(input = drop_2, size = 120)

28     fc1_drop = paddle.layer.dropout(input = fc,dropout_rate = 0.5)

29     fc1 = paddle.layer.fc(input = fc1_drop,size = 65,act = paddle.activation.Linear())

30     

31     fc2_drop = paddle.layer.dropout(input = fc,dropout_rate = 0.5)

32     fc2 = paddle.layer.fc(input = fc2_drop,size = 65,act = paddle.activation.Linear())

33     

34     fc3_drop = paddle.layer.dropout(input = fc,dropout_rate = 0.5)

35     fc3 = paddle.layer.fc(input = fc3_drop,size = 65,act = paddle.activation.Linear())

36     

37     fc4_drop = paddle.layer.dropout(input = fc,dropout_rate = 0.5)

38     fc4 = paddle.layer.fc(input = fc4_drop,size = 65,act = paddle.activation.Linear())

39     

40     fc5_drop = paddle.layer.dropout(input = fc,dropout_rate = 0.5)

41     fc5 = paddle.layer.fc(input = fc5_drop,size = 65,act = paddle.activation.Linear())

42     

43     fc6_drop = paddle.layer.dropout(input = fc,dropout_rate = 0.5)

44     fc6 = paddle.layer.fc(input = fc6_drop,size = 65,act = paddle.activation.Linear())

45

46     fc7_drop = paddle.layer.dropout(input = fc,dropout_rate = 0.5)    

47     fc7 = paddle.layer.fc(input = fc7_drop,size = 65,act = paddle.activation.Linear())

48     

49     # 将训练好的 7 个字符的全连接层拼接起来

50     fc_concat = paddle.layer.concact(input = [fc21, fc22, fc23, fc24,fc25,fc26,fc27], axis = 0)

51     predict = paddle.layer.classification_cost(input = fc_concat,label = y,act=paddle.activation.Softmax())

52     return predict

训练模型

   构建好网络模型后,就是比较常见的步骤了,譬如初始化,定义优化方法, 定义训练参数,定义训练器等等,再把第一步里我们写好的数据读取的方式放进去,就可以正常跑模型了。

 1 class NeuralNetwork(object):

 2     def __init__(self,X_train,Y_train,X_val,Y_val):

 3         paddle.init(use_gpu = with_gpu,trainer_count=1)

 4

 5         self.X_train = X_train

 6         self.Y_train = Y_train

 7         self.X_val = X_val

 8         self.Y_val = Y_val

 9

10     

11     def get_network_cnn(self):

12         

13         x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(self.data))

14         y = paddle.layer.data(name='y', type=paddle.data_type.integer_value(self.label))

15         conv_pool_1 = paddle.networks.simple_img_conv_pool(

16             input=x,

17             filter_size=12,

18             num_filters=50,

19             num_channel=1,

20             pool_size=2,

21             pool_stride=2,

22             act=paddle.activation.Relu())

23         drop_1 = paddle.layer.dropout(input=conv_pool_1, dropout_rate=0.5)

24         conv_pool_2 = paddle.networks.simple_img_conv_pool(

25             input=drop_1,

26             filter_size=5,

27             num_filters=50,

28             num_channel=20,

29             pool_size=2,

30             pool_stride=2,

31             act=paddle.activation.Relu())

32         drop_2 = paddle.layer.dropout(input=conv_pool_2, dropout_rate=0.5)

33

34         fc = paddle.layer.fc(input = drop_2, size = 120)

35         fc1_drop = paddle.layer.dropout(input = fc,dropout_rate = 0.5)

36         fc1 = paddle.layer.fc(input = fc1_drop,size = 65,act = paddle.activation.Linear())

37         

38         fc2_drop = paddle.layer.dropout(input = fc,dropout_rate = 0.5)

39         fc2 = paddle.layer.fc(input = fc2_drop,size = 65,act = paddle.activation.Linear())

40         

41         fc3_drop = paddle.layer.dropout(input = fc,dropout_rate = 0.5)

42         fc3 = paddle.layer.fc(input = fc3_drop,size = 65,act = paddle.activation.Linear())

43         

44         fc4_drop = paddle.layer.dropout(input = fc,dropout_rate = 0.5)

45         fc4 = paddle.layer.fc(input = fc4_drop,size = 65,act = paddle.activation.Linear())

46         

47         fc5_drop = paddle.layer.dropout(input = fc,dropout_rate = 0.5)

48         fc5 = paddle.layer.fc(input = fc5_drop,size = 65,act = paddle.activation.Linear())

49         

50         fc6_drop = paddle.layer.dropout(input = fc,dropout_rate = 0.5)

51         fc6 = paddle.layer.fc(input = fc6_drop,size = 65,act = paddle.activation.Linear())

52

53         fc7_drop = paddle.layer.dropout(input = fc,dropout_rate = 0.5)    

54         fc7 = paddle.layer.fc(input = fc7_drop,size = 65,act = paddle.activation.Linear())

55         

56         fc_concat = paddle.layer.concact(input = [fc21, fc22, fc23, fc24,fc25,fc26,fc27], axis = 0)

57         predict = paddle.layer.classification_cost(input = fc_concat,label = y,act=paddle.activation.Softmax())

58         return predict

59

60     # 定义训练器

61     def get_trainer(self):

62

63         cost = self.get_network()

64

65         #获取参数

66         parameters = paddle.parameters.create(cost)

67

68

69         optimizer = paddle.optimizer.Momentum(

70                                 momentum=0.9,

71                                 regularization=paddle.optimizer.L2Regularization(rate=0.0002 * 128),

72                                 learning_rate=0.001,

73                                 learning_rate_schedule = "pass_manual")

74     

75

76         # 创建训练器

77         trainer = paddle.trainer.SGD(

78                 cost=cost, parameters=parameters, update_equation=optimizer)

79         return trainer

80

81

82     # 开始训练

83     def start_trainer(self,X_train,Y_train,X_val,Y_val):

84         trainer = self.get_trainer()

85

86         result_lists = []

87         def event_handler(event):

88             if isinstance(event, paddle.event.EndIteration):

89                 if event.batch_id % 10 == 0:

90                     print "\nPass %d, Batch %d, Cost %f, %s" % (

91                         event.pass_id, event.batch_id, event.cost, event.metrics)

92             if isinstance(event, paddle.event.EndPass):

93                     # 保存训练好的参数

94                 with open('params_pass_%d.tar' % event.pass_id, 'w') as f:

95                     parameters.to_tar(f)

96                 # feeding = ['x','y']

97                 result = trainer.test(

98                         reader=val_reader)

99                             # feeding=feeding)

100                 print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)

101

102                 result_lists.append((event.pass_id, result.cost,

103                         result.metrics['classification_error_evaluator']))

104

105         # 开始训练

106         train_reader = paddle.batch(paddle.reader.shuffle(

107                 reador.reader_creator(X_train,Y_train),buf_size=200),

108                 batch_size=16)

109

110         val_reader = paddle.batch(paddle.reader.shuffle(

111                 reador.reader_creator(X_val,Y_val),buf_size=200),

112                 batch_size=16)

113         # val_reader = paddle.reader(reador.reader_creator(X_val,Y_val),batch_size=16)

114

115         trainer.train(reader=train_reader,num_passes=20,event_handler=event_handler)

输出结果

  上一步训练完以后,保存训练完的模型,然后写一个test.py进行预测,需要注意的是,在预测时,构建的网络结构得和训练的网络结构相同。

#批量预测测试图片准确率

python test.py /Users/shelter/test

##输出结果示例

output:

预测车牌号码为:津 K 4 2 R M Y

输入图片数量:100

输入图片行准确率:0.72

输入图片列准确率:0.86

  如果是一次性只预测一张的话,在终端里会显示原始的图片与预测的值,如果是批量预测的话,会打印出预测的总准确率,包括行与列的准确率。

总结

   车牌识别的方法有很多,商业化落地的方法也很成熟,传统的方法需要对图片灰度化,字符进行切分等,需要很多数据预处理的过程,端到端的方法可以直接将原始的图片灌进去进行训练,最后出来预测的车牌字符的结果,这个方法在构建了两层卷积-池化网络结构后,并行训练了 7 个全连接层来进行车牌的字符识别,可以实现端到端的识别。但是在实际训练过程中,仍然有一些问题,譬如前几个训练的全连接层的准确率要比最后一两个的准确率高,大家可以分别打印出每一个全连接层的训练结果准确率对比一下,可能是由于训练还没有收敛导致的,也可能有其他原因,如果在做的过程中发现有什么问题,或者有更好的方法,欢迎留言~

参考文献:

1.我的github:https://github.com/huxiaoman7/mxnet-cnn-plate-recognition

作者:Charlotte77 

免责声明:本文为厂商推广稿件,企业发布本文的目的在于推广其产品或服务,站长之家发布此文仅为传递信息,不代表站长之家赞同其观点,不对对内容真实性负责,仅供用户参考之用,不构成任何投资、使用等行为的建议。请读者使用之前核实真实性,以及可能存在的风险,任何后果均由读者自行承担。

 
关键词: PaddlePaddle 车牌识别
 
[ 资讯搜索 ]  [ 加入收藏 ]  [ 告诉好友 ]  [ 打印本文 ]  [ 违规举报 ]  [ 关闭窗口 ]

 
0条 [查看全部]  相关评论

 
网站首页 | 关于我们 | 联系方式 | 使用协议 | 版权隐私 | 网站地图 | 排名推广 | 广告服务 | 积分换礼 | 网站留言 | RSS订阅 | 吉ICP备11001726号-6
企业800网 · 提供技术支持